$\mathrm{Cll}-\mathrm{Cl} 2$	1.373 (4)	C4-C5	1.391 (3)			
$\mathrm{C} 4-\mathrm{N} 4$	1.429 (3)	O9A-N9	1.210 (3)			
Cl-C6	1.407 (4)	O98-N9	1.210 (3)			
C3-C4	1.389 (3)	$\mathrm{O}\\|A-\mathrm{N}\\|$	1.220 (3)			
C5-C6	1.371 (4)	$\mathrm{O}\\|B-\mathrm{N}\\|$	1.216 (3)			
C8-08	1.328 (3)	$\mathrm{O} 4 \mathrm{~A}-\mathrm{N} 4$	1.230 (3)			
C14-O13	1.476 (4)	$\mathrm{O} 4 \mathrm{~B}-\mathrm{N} 4$	1.233 (3)			
Cll-N11	1.461 (3)					
C13-O13-C14	117.3 (3)	O9A-N9-O9B	122.8 (3)			
O9A-N9-C9	119.1 (3)	O98-N9-C9	118.0 (2)			
$\mathrm{O}\\|A-\mathrm{N}\\|-\mathrm{O} \\| B$	124.0 (2)	$\mathrm{Olla}-\mathrm{N} 11-\mathrm{ClI}$	118.2 (3)			
$\mathrm{O} 118-\mathrm{N} \\|-\mathrm{Cll}$	117.9 (2)	C8-C7-C13	118.7 (2)			
C12-C7-C13	120.6 (2)	O8-C8-C7	121.2 (2)			
O8-C8-C9	121.1 (2)	$\mathrm{Ol}-\mathrm{Cl} 3-\mathrm{Ol} 3$	123.2 (3)			
$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{C} 7$	122.4 (3)	$\mathrm{O} 4 A-\mathrm{N} 4-\mathrm{O} 4 B$	121.1 (2)			
$\mathrm{O} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{C} 4$	120.2 (2)	$\mathrm{O} 4 \mathrm{~B}-\mathrm{N} 4-\mathrm{C} 4$	118.6 (2)			
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	120.9 (2)	$\mathrm{NI}-\mathrm{Cl}-\mathrm{C} 6$	120.8 (2)			

Table 3. Hydrogen-bonding geometry ($A,^{\circ}$)

$D-\mathrm{H} \cdot . \cdot A$	D -H	H...A	D. . A	D-H. . A
O8-H8. . Ol	0.92 (4)	1.74 (4)	2.547 (4)	144 (3)
O8-H8...O4B	0.92 (4)	2.41 (4)	2.968 (3)	119 (4)
$\mathrm{NI}-\mathrm{Hl} A \cdots \mathrm{O} B^{\text {i }}$	0.83 (3)	2.22 (3)	2.984 (4)	152 (3)
$\mathrm{NI}-\mathrm{H} B \cdots \mathrm{O} 8^{1}$	0.94 (3)	2.56 (3)	3.147 (3)	121 (4)
$\mathrm{NI}-\mathrm{HIB} \cdot . \mathrm{O9} A^{\text {i }}$	0.94 (3)	2.07 (3)	3.008 (4)	172 (3)
Symmetry code: (i) $x+\frac{1}{2},-\frac{1}{2}-y, z-\frac{1}{2}$				

Atom O9A has an unusually large $B_{\text {eq }}$ value, reflecting highly anisotropic displacement parameters. This could be due to disorder, so the anisotropic atom was replaced with two isotropic half atoms. Refinement of this model converged with $R=0.056$ and $w R=0.074$, significantly worse than the anisotropic model. We are left with no explanation for this large anisotropy; it does not appear to be due to disorder between two distinct positions.

The non- H atoms were refined anisotropically. All H atoms except $\mathrm{H} 1 A, \mathrm{H} 1 B$ and H 8 , for which all parameters were refined isotropically, were included in the calculations placed in idealized positions ($\mathrm{C}-\mathrm{H} 0.95 \AA$) with $B_{\text {iso }}=1.2 B_{\text {eq }}$ of the atoms to which they are bonded.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (Gilmore, 1984), DIRDIF (Beurskens, 1984). Program(s) used to refine structure: TEXSAN. Molecular graphics: TEXSAN. Software used to prepare material for publication: TEXSAN.

We gratefully acknowledge financial support from the Office of Naval Research to MCE. We also like to thank Dr. Isaac Ghebre-Sellasie (Pharmaceutical Research, Warner-Lambert Company) for his assistance in preparing this paper.

[^0]
References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.

Clinton, R. O. \& Laskowski, S. C. (1948). J. Am. Chem. Soc. 70, 3135-3136.
Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Etter, M. C. \& Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639-640.
Etter, M. C. \& Frankenbach, G. M. (1989). Chem. Mater. 1, 10-12.
Etter, M. C. \& Huang, K. S. (1992). Chem. Mater. 4, 824-827.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Crvst. B46, 256-262.
Etter, M. C. \& Reutzel, S. M. (1991). J. Am. Chem. Soc. 113, 25862598.

Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M. \& Panunto, T. W. (1990). J. Am. Chem. Soc. 112, 8415-8426.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Trueblood, K. N., Goldish, E. \& Donohue, J. (1961). Acta Cryst. 14, 1009-1017.
Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.
Zyss, J., Nicoud, J. F. \& Coquillay, M. (1984). J. Chem. Phys. 81, 4160-4167.

Acta Cryst. (1996). C52, 2871-2873

L-Leucyl-L-alanine Dimethyl Sulfoxide Solvate

Shome Nath Mitra, L. Govindasamy and E. Subramanian*
Department of Crystallography and Biophysics, \dagger University of Madras, Guindy Campus, Madras 600025 , India

(Received 2 January 1996; accepted II June 1996)

Abstract

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, the dipeptide molecule exists as a zwitterion and the backbone adopts an extended conformation. The peptide unit is trans and shows a slight deviation from planarity $\left[\omega_{1}=\right.$ $174.4(3)^{\circ} \mathrm{J}$. The leucyl side chain adopts the $t\left(g^{+} t\right)$ conformation. The crystal packing gives rise to channels which are occupied by the disordered DMSO solvent molecules.

\section*{Comment}

Structural studies on peptides represent an ongoing project in our laboratory aimed at identifying stable peptide conformations for use in models for protein folding. The present study forms part of the work on several Leu- X peptides.

\dagger DCB Contribution No. 873.

The title dipeptide molecule (Leu-Ala), (I), exists as a zwitterion with terminal NH_{3}^{+}and COO^{-}groups. Fig. 1 shows an ORTEP plot of the molecule (Vickovic, 1994). The peptide unit is trans and shows a slight deviation from planarity. The non-planarity of the peptide unit arises not only as a result of rotation around the $\mathrm{C}^{\prime}-\mathrm{N}$ bond, but also from out-of-plane bending of the bonds attached to the C^{\prime} or N , as noted by Ramachandran \& Sasisekharan (1968). Two parameters, χ_{C} and χ_{N}, were introduced by Winkler \& Dunitz (1971) to describe the out-of-plane bending which has the effect of changing the hybridization of the orbitals attached to C^{\prime} and N (χ_{C} is defined as the dihedral angle between planes $\mathrm{Cl} A$, $\mathrm{C}^{\prime}, \mathrm{N} 2$ and $\mathrm{O} 1, \mathrm{C}^{\prime}, \mathrm{N} 2$ while χ_{N} is the dihedral angle between planes $\mathrm{Cl}^{\prime}, \mathrm{N} 2, \mathrm{H} 6$ and $\mathrm{Cl}^{\prime}, \mathrm{N} 2, \mathrm{C} 2 A$). In the present structure, $\chi_{\mathrm{C}}=0.3$ while $\chi_{\mathrm{N}}=13.4^{\circ}$ indicating that the N -atom orbitals are slightly pyramidal. The backbone adopts an extended conformation.

(I)

The side chain of the leucyl residue adopts one of the energetically favourable conformations $t\left(g^{+} t\right)$ (Benedetti, Morelli, Nemethy \& Scheraga, 1983). The peptide chains are oriented with their longest dimension along

Fig. 1. ORTEP (Vickovic, 1994) plot of the molecule with displacement ellipsoids at the 50% probability level.
the b axis and are packed head-to-tail along this axis with the protonated N terminus interacting with the ionized C terminus of a neighbouring molecule. The N terminus also forms a strong hydrogen bond with the O atom of the solvent (DMSO) molecule. The carboxyl group is planar and forms a dihedral angle of 24.3° with the plane of the adjacent peptide unit. This relative orientation favours the formation of an intramolecular hydrogen bond between N 2 and $\mathrm{O} 22^{\prime}$. The packing of molecules in the lattice gives rise to channels which are occupied by the DMSO solvent molecules. The S atom of the solvent molecule is disordered; this involves the S atom occupying alternative sites which are nearly mirror images of each other in the plane of the other three atoms.

Experimental

Crystals obtained by slow evaporation of an aqueous solution of the dipeptide in the presence of traces of DMSO.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} . \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=280.4$
Orthorhombic
$P 2 \mid 2,21$
$a=5.197(2) \AA$
$b=16.097$ (2) \AA
$c=18.718(2) \AA$
$V=1565.9(7) \AA^{3}$
$Z=4$
$D_{x i}=1.19 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical ψ scans (North,
Phillips \& Mathews, 1968)
$T_{\text {min }}=0.71, \quad T_{\text {max }}=0.83$
1786 measured reflections
1727 independent reflections 1306 observed reflections $[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.075$
$\omega R=0.083$
$S=1.020$
1306 reflections
206 parameters
$u^{\prime}=1 /\left[\sigma^{2}(F)+0.012 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.2$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 15 reflections
$\theta=12-16^{\circ}$
$\mu=1.88 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle
$0.4 \times 0.2 \times 0.1 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& R_{\text {int }}=0.013 \\
& \theta_{\max }=65^{\circ} \\
& h=0 \rightarrow 6 \\
& k=0 \rightarrow 19 \\
& l=0 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \text { monitored every } 200 \\
& \quad \text { reflections } \\
& \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: }<1 \%
\end{aligned}
$$

$\Delta \rho_{\max }=0.3 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.3 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq/iso }}$
NI	-0.2128 (7)	0.7957 (2)	0.6965 (2)	4.17 (8)
CIA	-0.3028 (8)	0.8593 (2)	0.7484 (2)	3.70 (8)
CIB	-0.2556 (9)	0.8249 (2)	0.8234 (2)	4.7 (1)
C1G	-0.3154 (13)	0.8826 (4)	0.8856 (3)	6.7 (2)
$C \mid D 1$	-0.5833 (19)	0.9098 (8)	0.8868 (4)	11.9 (3)
ClD 2	-0.237 (2)	0.8377 (5)	0.9536 (3)	9.9 (3)
Cl^{\prime}	-0.1541 (7)	0.9386 (2)	0.7356 (2)	3.61 (8)
O1'	0.0765 (5)	0.9372 (2)	0.7248 (2)	4.51 (7)
N2	-0.2915 (6)	1.0080 (2)	0.7374 (2)	4.05 (8)
C2A	-0.1791 (8)	1.0911 (2)	0.7326 (2)	4.2 (1)
C2B	-0.1516 (18)	1.1148 (3)	0.6537 (3)	7.9 (2)
$\mathrm{C} 2{ }^{\prime}$	-0.3464 (9)	1.1533 (2)	0.7713 (2)	4.6 (1)
O21 ${ }^{\prime}$	-0.2578 (7)	1.2251 (1)	0.7785 (2)	6.1 (1)
O22'	-0.5644 (7)	1.1329 (2)	0.7906 (3)	7.1 (1)
Solvent molecule				
S1 \dagger	0.0659 (6)	0.1503 (2)	0.0329 (1)	7.88 (7)
S2 \dagger	-0.0570 (9)	0.0861 (2)	0.0137 (2)	6.9 (8)
O3	-0.2197 (12)	0.1414 (4)	0.0590 (2)	9.9 (2)
Cl	0.020 (2)	0.1416 (5)	-0.0631 (4)	11.7 (4)
C2	0.207 (2)	0.0541 (7)	0.0562 (5)	11.6 (3)

\dagger Sl and S2 were refined with site-occupancy factors of 0.62 and 0.38 , respectively.

Table 2. Selected torsion angles $\left(^{\circ}\right.$) involving non- H atoms

$\mathrm{NI}-\mathrm{Cl} A-\mathrm{Cl}^{\prime}-\mathrm{N} 2$	$\left(\psi_{1}\right)$	137.3 (3)
$\mathrm{C} 1 A-\mathrm{Cl}^{\prime}-\mathrm{N} 2-\mathrm{C} 2 A$	$\left(\omega_{1}\right)$	174.4 (3)
$\mathrm{NI}-\mathrm{CIA}-\mathrm{ClB-CIG}$	$\left({ }^{1} \chi_{1}\right)$	175.6 (4)
$\mathrm{CIA}-\mathrm{ClB-CIG-C1DI}$	$\left({ }^{1} \chi_{21}\right)$	59.1 (7)
$\mathrm{C} 1 A-\mathrm{Cl} B-\mathrm{Cl} G-\mathrm{C} 1 \mathrm{D} 2$	(' χ_{22})	-176.1 (5)
$\mathrm{Cl}^{\prime}-\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C}^{\prime}{ }^{\prime}$	$\left(\varphi_{2}\right)$	-151.8(4)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2^{\prime}-\mathrm{O} 21^{\prime}$	$\left(\psi_{21}\right)$	171.9 (3)
$\mathrm{N} 2-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 2^{\prime}-\mathrm{O} 22^{\prime}$	$\left(\psi_{22}\right)$	-11.8(5)

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. . A	D-H	H...A	D. ${ }^{\text {A }}$	D-H.. A
$\mathrm{N} 1-\mathrm{HI} \cdots \mathrm{O} 21^{\prime \prime}$	1.02 (7)	1.74 (7)	2.737 (5)	163 (5)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O} 3^{\prime \prime}$	0.79 (7)	2.02 (7)	2.788 (6)	164 (7)
$\mathrm{N} 1-\mathrm{H} 3 \cdots \mathrm{O} 22^{\prime \prime 1}$	0.69 (7)	2.21 (7)	2.875 (5)	161 (7)
N2-H6. . O22 ${ }^{\prime}$	0.79 (7)	2.33 (6)	2.654 (5)	106 (6)
Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (ii) $-\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (iii) $-1-x, y-\frac{1}{2}, \frac{3}{2}-z$.				

H atoms of terminal groups in side chains showed abnormal B_{j} 's and hence were only included in the structure-factor calculations. The other H atoms in the peptide molecule were refined isotropically.

Data collection: SDP (Enraf-Nonius, 1979). Cell refinement: $S D P$. Data reduction: $S D P$. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1978). Molecular graphics: PLUTO (Motherwell \& Clegg, 1976); ORTEP (Vickovic, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983).

SNM thanks UGC for the award of a junior fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: VJI038). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Benedetti, E., Morelli, G., Nemethy, G. \& Scheraga, H. A. (1983). Int. J. Peptide Protein Res. 22, 1-15.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ramachandran, G. N. \& Sasisekharan, V. (1968). Advances in Protein Chemistry, Vol. 23, p. 238. New York: Academic Press.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Vickovic, I. (1994). J. Appl. Cryst. 27, 437.
Winkler, F. K. \& Dunitz, J. D. (1971). J. Mol. Biol. 59, 169-182.

Acta Cryst. (1996). C52, 2873-2875

Dalspinosin

S. Lakshmi, S. Kumar, J. Senthllselvan and K. Subramanian*

Department of Physics, Anna University, Madras 600025 , India
(Received 23 August 1995; accepted IO June 1996)

Abstract

The title compound, 3-(3,4-dimethoxyphenyl)-5,7-di-hydroxy-6-methoxy-4H-1-benzopyran-4-one, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}$, consists of two phenyl rings (A and B) and a heterocyclic ring C. Rings A and B are planar and ring C is slightly puckered. The packing of the molecules in the unit cell is governed by van der Waals interactions and hydrogen

 bonds.
Comment

Dalspinosin (I) is an isoflavone derivative having a unique $3^{\prime}, 4^{\prime}$ arrangement of the methoxy groups in ring B. Isoflavanoids have oestrogenic, insecticidal, pesticidal and antifungal properties (Harborne, Mabry \& Mabry, 1975). Fig. 1 is a perspective view of the molecular geometry showing numbering scheme adopted.

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1232). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

